Article

Synthesis of Dibenzo[*g,p***]chrysenes from Bis(biaryl)acetylenes via Sequential ICl-Induced Cyclization and Mizoroki**-**Heck Coupling**

Chia-Wen Li,† Cheng-I Wang,† Hsin-Yi Liao,‡ Rupsha Chaudhuri,† and Rai-Shung Liu*,†

*Department of Chemistry, National Tsing-Hua Uni*V*ersity, Hsinchu, Taiwan, Republic of China, and Department of Science Education, National Taipei University of Education, Taipei, Taiwan, Republic of China*

rsliu@mx.nthu.edu.tw

*Recei*V*ed July 11, 2007*

We report a facile synthesis of functionalized dibenzo[*g*,*p*]chrysenes via initial ICl-promoted cyclization of bis(biaryl)acetylenes, followed by the Mizoroki-Heck coupling reaction. This new approach works well for various bis(biaryl)acetylenes to afford dibenzo[*g*,*p*]chrysenes bearing various functionalities. With substrates of one special type including 4'-methoxy-2-ethynylbiphenyls, we found that the ICl treatment led to *ipso* cyclization to give bicyclic spirocyclohexadienones. In the presence of MeOH/H2- SO4, these spiroketone products undergo rearrangement to give 9-iodophenanthrenes through a selective 1,2-alkenyl migration. We prepared various 4′-methoxy-2-ethynylbiphenyl compounds to show the generalization of such an *ipso* cyclization and 1,2-alkenyl shift. This *ipso*-cyclization approach can be extended to the preparation of dibenzo[*g*,*p*]chrysenes.

Introduction

Polycyclic aromatic hydrocarbons have widespread applications as functional materials in various electronic devices such as nonlinear optical,¹ photo- and electroluminescent,² and molecule-based sensory devices.3 Dibenzo[*g*,*p*]chrysenes represent an interesting class of such compounds because of their attractive fluorescent properties such as high quantum yields, small Stoke shifts, and long-lived excited states.⁴ Synthesis of dibenzo[*g*,*p*]chrysenes is generally plagued by long procedures prior to the advent of SbCl₅/MeOH oxidation of bis(biaryl)acetylenes by Swager.4 However, this method is limited to substrates of a special type $(R^1 = OMe, eq 1)$ via the carbocation radical intermediate I. Iodine, ICl, and iodonium salt induced5 intramolecular acetylene cyclization is synthetically useful as it provides alkenyl iodides, which can be further functionalized

[†] National Tsing-Hua University.

[‡] National Taipei University of Education.

^{(1) (}a) Munn, R. W.; Ironside, C. N. *Principles and Application of Nonlinear Optical Materials*; Chapman & Hall: London, UK, 1993. (b) Nie, W. *Adv. Mater.* **1993**, 5, 520. (c) Prasad, P. N.; Williams, D. J. *Introduction to Nonlinear Optical Effects in Molecules and Polymers*; Wiley: New York, 1991.

^{(2) (}a) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. *Nature* **1993**, *365*, 628. (b) Schwoerer, M. *Phys. Bull*. **1994**, *50*, 52. (c) Gruner, J.; Hamer, P. J.; Friend, R. H.; Huber, H. J.; Scherf, U.; Holmes, A. B. *Ad*V*. Mater*. **¹⁹⁹⁴**, *⁶*, 748. (d) Braun, D.; Heeger, A. J. *Appl. Phys. Lett*. **1991**, *58*, 1982.

^{(3) (}a) Swager, T. M.; Marsella, M. J. *Ad*V*. Mater*. **¹⁹⁹⁴**, *⁶*, 595. (b) Marsella, M. J.; Swager, T. M. *J. Am. Chem. Soc*. **1993**, *115*, 12214. (c) Marsella, M. J.; Carroll, P. J.; Swager, T. M. *J. Am. Chem. Soc*. **1994**, *116*, 9347. (d) Matsue, T.; Nishizawa, M.; Sawaguchi, T.; Uchida, I. *J. Chem. Soc.*, *Chem. Commun*. **1991**, 1029. (e) Schuhmann, W.; Huber, J.; Mirlach, A.; Daub, J. *Ad*V*. Mater*. **¹⁹⁹³**, *⁵*, 124.

⁽⁴⁾ Yamaguchi, S.; Swager, T. *J. Am. Chem. Soc*. **2001**, *123*, 12087.

by using palladium chemistry.6 To prepare dibenzo[*g*,*p*]chrysenes bearing diverse substituents, we have designed a twostep transformation involving an initial ICl-promoted cyclization to give iodophenanthrene II, followed by Pd-catalyzed cyclization, as depicted in eq 2. Here we report our findings on various dibenzo[*g*,*p*]chrysene syntheses.

Results and Discussion

Bis(biaryl)acetylenes **1a**-**^d** were prepared according to Swager's procedures.⁴ SbCl₅/MeOH oxidation was unsuccessful in preparing dibenzo[*g*,*p*]chrysenes from compounds **1a** and **1b** because of the lack of an activating group ($R¹ = OMe$). When species **1a** was subjected to ICl-induced^{7,8} cyclization, 9-iodophenanthrene **2a** was obtained in 90% yield via ortho cyclization. 3′,5′-Difluoro-2-ethynylbiphenyl **1b** and 3′,5′ dimethoxy-2-ethynylbiphenyl **1c** similarly afforded the corresponding iodophenanthrene derivatives **2b** and **2c** in 70% and 89% yields, respectively. This method was efficient for the cyclization of trimethoxy-substituted ethynyl biphenyl **1d**, as evident from the formation of 1,2,3-trimethoxy 9-iodophenanthrene $2d$ in 95% yield. Although the $R³$ substituent of resulting product 2c was also iodinated by ICl $(R^3 = I)$, this unexpected iodide was removable in the subsequent Pd-catalyzed cyclization (see Table 1).

When this cyclization was extended to 4′-methoxy-2-ethynylbiphenyls **3a**,**b**, as shown in Scheme 1, spiro[4.5] cyclohexadienones **4a**,**b** were, however, obtained through *ipso*cyclization in 87% and 88% yields, respectively; in these cases, we observed no corresponding phenanthrene derivatives. The distinct behavior of species **3a** and **3b** is attributed to the directing effect of the *p*-methoxy group to favor a 5-*endo-dig*

a [Substrate] $= 0.1$ M, ICl (1.5 equiv for entries 1, 2, and 4 and 2.5 in for entry 3, *b* Yields are given after column chromatography on a equiv for entry 3. *^b* Yields are given after column chromatography on a silica column.

SCHEME 1

cyclization. ICl-induced *ipso*-cyclization was reported for 4-(*p*methoxyaryl)alk-1-ynes by Larock.8,9 As spiro structural motifs are present frameworks in some natural products,¹⁰ as well as some organic optoelectronic materials, 11 we proceeded to investigate this ICl-induced spiro cyclization in detail.

We prepared various 4'-methoxy-2-alkynylbiphenyl compounds **5a**-**ⁿ** to examine the generality of this ICl-induced cyclization; our results are depicted in Table 2. Entries $1-8$ show the variation of the alkynyl R substituent of substrates with phenyl ($R = C_6H_5$, 4-MeC₆H₄, and 4-MeOC₆H₄), heteroaryl ($R = 2$ -furyl, 2-thienyl, 2-benzofuryl, and 2-benzo[b]thienyl), and alkyl $(R = n-C_6H_{13})$ groups; the corresponding spirocyclohexadienones were obtained in yields exceeding 88%. Here we obtained no byproduct stemmed from iodination of the reactive furan or thiophene moieties. This ICl-induced *ipso*cyclization also worked efficiently for substrates **5i**-**ⁿ** bearing methoxy at the bridging phenyl $C(4)$ and $C(5)$ positions; the desired spirocyclohexadienones **6i**-**ⁿ** were obtained in 88-94% yields. The crystal structure of compound **6j** was confirmed by an X-ray diffraction study.12

We also prepared 2′,4-dimethoxy-2-alkynylbiphenyl species **7**, which upon treatment with ICl produced 9-iodophenanthrene

⁽⁵⁾ For selected examples, see: (a) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. *Angew. Chem.*, *Int. Ed.* **2003**, *42*, 2406. (b) Barluenga, J.; Gonzalez, J. M.; Campos, P. J.; Asensio, G. *Angew. Chem.*, *Int. Ed.* **1988**, *27*, 1546. (c) Barluenga, J.; Llorente, I.; Alvarez-Garcia, L. J.; Gonzalez, J. M.; Compos, P. J.; Diaz, M. R.; Garcia-Granda, S. *J. Am. Chem. Soc.* **1997**, *119*, 6933. (d) Klein, T. R.; Bergemann, M.; Yehia, N. A. M.; Fanghanel, E. *J. Org. Chem.* **1998**, *63*, 4626. (e) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. *Org. Lett.* **2001**, *3*, 651. (f) Larock, R. C.; Yue, D. *Tetrahedron Lett.* **2001**, *42*, 6011. (g) Yue, D.; Larock, R. C. *J. Org. Chem.* **2002**, *67*, 1905. (h) Huang, Q.; Hunter, J. A.; Larock, R. C. *J. Org. Chem.* **2002**, *67*, 3437. (i) Arcadi, A.; Cacchi, S.; Di Giuseppe, S.; Fabrizi, G.; Marinelli, F. *Org. Lett.* **2002**, *4*, 2409. (j) Amjad, M.; Knight, D. W. *Tetrahedron Lett.* **2004**, *45*, 539.

⁽⁶⁾ For selected reviews and examples, see: (a) Larock, R. C. *J. Organomet. Chem*. **1999**, *576*, 111. (b) Larock, R. C. *Palladium-Catalyzed Annulation* in *Perspecti*V*es in Organopalladium Chemistry for the XXI Century*; Tsuji, J., Ed.; Elsevier Press: Lausanne, Switzerland, 1999; pp ¹¹¹-124. (c) Tsuji, J. *Palladium Reagents and Catalysts*; John Wiley & Sons: Chichester, UK, 1999. (d) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Moro, L. *Eur. J. Org. Chem*. **1999**, 1137. (e) Campo, M. A.; Larock, R. C. *J. Org. Chem*. **2002**, *67*, 5616.

⁽⁷⁾ Yao, T.; Campo, M. A.; Larock, R. C. *Org. Lett*. **2004**, *6*, 2677. (8) Yao, T.; Campo, M. A.; Larock, R. C. *J. Org. Chem*. **2005**, *70*, 3511.

⁽⁹⁾ For ICl-induced *ipso*-cyclization, see: (a) Appel, T. R.; Yehia, N. A. M.; Baumeister, U.; Hartung, H.; Kluge, R.; Strohl, D.; Fanghanel, E. *Eur. J. Org. Chem.* **2003**, 47. (b) Zhang, X.; Larock, R. C. *J. Am. Chem. Soc.* **2005**, *127*, 12230.

^{(10) (}a) For a review, see: Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. In *The Total Synthesis of Natural Products*; Apsimon, J., Ed.; Wiley-Interscience: New York, 1983; Vol. 5, pp 264- 313. (b) Sakamoto, K.; Tsuji, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. *J. Antibiot.* **1996**, *49*, 37. (c) Gonzalez-Lopez de Turiso, F.; Curran, D. P. *Org. Lett.* **2005**, *7*, 151 and references cited therein.

⁽¹¹⁾ Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. *Chem. Re*V. **²⁰⁰⁷**, *¹⁰⁷*, 1011.

⁽¹²⁾ X-ray data for compound **6j** are provided in the Supporting Information.

TABLE 2. ICl-Induced Synthesis of Spirocyclohexadienone Derivatives and Their Acid-Promoted Rearrangements

 a 0.1 M [substrate] in CH₂Cl₂, -78 °C for 2 h. b 0.1 M [substrate] in CH₂Cl₂/MeOH (1:1, v/v), H₂SO₄ (2.0 equiv), 0 to 23 °C, 6 h. ^c Yields are given after purification by column chromatography on silica gel.

SCHEME 2

8 in an 82% yield (Scheme 2). The *ipso*-chemoselectivity is apparently limited to substrates bearing a *p*-methoxy-substituted phenyl ring.13

The preceding spirocyclohexadienones **6a**-**ⁿ** are expected to undergo isomerization to give iodophenanthrene products through the dienone-phenol rearrangement, generally catalyzed by Brønsted acids.14 As shown in Scheme 3, the organic acid p -TSA (10 mol %) or H_2SO_4 (2.0 equiv) gave no rearranged products even under refluxing in $CH₂Cl₂$ for 12 h. To our delight, the use of H_2SO_4 (2.0 equiv) in mixed $CH_2Cl_2/MeOH$ (1:1, v/v) at 23 °C for 2 h afforded rearranged product **9a** in a 93% yield. The structure of compound **9a** was carefully elucidated from its 1H NOE spectrum, which reveals that the acid-catalyzed rearrangement proceeds via a 1,2-migration of the alkenyl rather than the phenyl group. Scheme 4 shows an

SCHEME 4

SCHEME 5

SCHEME 6

SCHEME 7

extension of this rearrangement to species **4a** and **4b**, which gave products **10a** and **10b** in 90% and 87% yields, respectively. Notably, the original protocol in eq 2 would have provided the same products **10a** and **10b** if the ICl-induced 6-*endo-dig* cyclization were applicable to initial substrates **3a** and **3b**.

Using these optimum conditions, we further examined the generality of this acid-catalyzed 1,2-alkenyl migration by treating the remaining spirocyclohexadienones $6b - n$ with H_2 -

⁽¹³⁾ We do not exclude the possibility that *ipso*-cyclization actually occurred for species **7** bearing an *o*-methoxy group, which underwent a rapid rearrangement under the reaction conditions.

^{(14) (}a) Shine, H. J. In *Aromatic Rearrangements*; Elsevier: New York, 1967; pp 55-68. (b) Schultz, A. G.; Hardinger, S. A. *J. Org. Chem*. **¹⁹⁹¹**, *56*, 1105. (c) Zimmerman, H. E.; Cirkva, V. *J. Org. Chem*. **2001**, *66*, 1839.

a 0.05 M [substrate] in DMA, at 120 °C for 4 h with 5% PdCl₂(PPh₃)₂ and NaOAc (2.0 equiv). *b* Yields are given after purification by column chromatography on silica gel.

SCHEME 8

 SO_4 in MeOH/CH₂Cl₂; the results are summarized in Table 2. The rearrangement occurred efficiently to generate the desired 9-iodophenanthrene products **9b**-**n**, with yields exceeding 89%. In these cases, we obtained no side product corresponding to a 1,2-phenyl migration. The diversity of substrates used demonstrates the scope and reliability of this rearrangement. The 1 H NMR spectral signals of all these products have a common singlet signal in the upfield region $(\delta \ 6.75 - 7.05 \text{ ppm}),$ characteristic of the phenanthrene C-(1) proton resonance.

As shown in Table 3, we sought to accomplish the ultimate synthesis of dibenzo[*g*,*p*]chrysenes using 9-iodophenanthrenes **2a**-**^d** and **10a**,**b**, via two distinctly different pathways, with the second cyclization being based on an intramolecular Mizoroki-Heck coupling.15 Treatment of iodoarene **2a** with $PdCl₂(PPh₃)₂$ (5 mol %) and sodium acetate (2.0 equiv) in DMA (*N*,*N*-dimethylacetamide) at 120 °C for 4 h afforded the desired derivative **11a** in a 71% yield. This set of conditions was extendible to other 9-iodophenanthrenes **2b**, **2d**, and **10b**, giving the desired products **11b** and **11d**,**^e** in 68-85% yields. Notably, the extra iodide $(R^4 = I)$ of species 2c was reduced in this cyclization to afford product **11c** (69%). Scheme 5 shows an alternative application of these spiroketone products; treatment of alkenyl species $4b$ with catalyst $PdCl_2(PPh_3)_2$ and NaOAc in DMA afforded the cyclized product **12** in an 85% yield.

Scheme 6 depicts a plausible mechanism for the rearrangement of spirodienone **6a** to 9-iodophenanthrene **9a** promoted by MeOH/H2SO4. In this transformation, a proton initially enhances the addition of methanol at the ketone group of species **6a** to form species **IV**, which ultimately forms species **V** in the presence of excess MeOH. In contrast with species **III**, the methoxy group of species **V** is kinetically stable and stabilizes the oxonium center to induce a 1,2-alkenyl migration. We cannot exclude the possibility that because MeOH is more polar than $CH₂Cl₂$ it facilitates this migration.

As depicted in Scheme 7, we performed a calculation to estimate the relative stability of two carbocations **VI** and **VII**, corresponding to the 1,2-migration of an alkenyl and a phenyl group, respectively. According to the B3LYP/6-31+G* calculation (3-21G* for iodine atom since 6-31+G* in not available), carbocation **VI** has +9.41 kcal/mol less in energy than species **VII**; this result supports a 1,2-alkenyl migration.

Conclusion

We have achieved a facile synthesis of functionalized dibenzo[*g*,*p*]chrysenes via initial ICl-promoted cyclization of bis(biaryl)acetylenes, followed by Pd-catalyzed annulation of the resulting 9-iodophenanthrene intermediates. For substrates of one particular type, such as 4′-methoxy-2-ethynylbiphenyls, we found that this ICl treatment leads to *ipso* cyclization to give bicyclic spirocyclohexadienones, which are potentially useful intermediates in organic synthesis. In the presence of MeOH/H2SO4, these spirocyclohexadienones undergo rearrangement to give 9-iodophenanthrenes through a selective 1,2 migration of the alkenyl group. The feasibility of this migration is supported by calculation.

Experimental Sections

(1) Representative Synthesis of 2-Ethynyl Biphenyls: Synthesis of 4′**-Methoxy-2-(phenylethynyl)biphenyl (5a). (a) Synthesis of 2-Bromo-4**′**-methoxybiphenyl (14).** To a solution of $Pd(OAc)_{2}$ (101 mg, 0.45 mmol), PPh_{3} (354 mg, 1.35 mmol), and K_2CO_3 (2.76 g, 20.0 mmol) in DME (30 mL) and H₂O (10 mL) near 23 °C was added 4-methoxyphenylboronic acid (1.67 g, 11.0 mmol);^{16,17} the resulting mixture was stirred for 10 min. To this

^{(15) (}a) Ames, D. E.; Opalko, A. *Tetrahedron* **1984**, *40*, 1919. (b) For a recent review on aryl-aryl bond formation, see: Alberico, D.; Scott, M. E.; Lautens, M. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 174.

⁽¹⁶⁾ Karig, G.; Moon, M.-T.; Thasana, N.; Gallagher, T. *Org. Lett.* **2002**, *4*, 3115.

solution was added 2-iodo-1-bromobenzene (2.83 g, 10.0 mmol), and the mixture was heated to 80 °C for 2 h. The resulting solution was cooled to 23 °C before addition of saturated ammonium chloride solution and extraction with ethyl acetate. The extracts were washed with brine solution, dried over MgSO₄, filtered, and concentrated. The mixtures were eluted through a silica column to give bromobiaryl species **14** (2.24 g, 8.5 mmol, 85%) as a yellow oil.

(b) Synthesis of 4′**-Methoxy-2-(phenylethynyl)biphenyl (5a).** To Pd(PhCN)₂Cl₂ (195 mg, 0.509 mmol) and CuI (99 mg, 0.509) mmol) was added dry toluene (20 mL), P(*t*-Bu)₃ (206 mg 1.02 mmol), $HN(i-Pr)_2$ under N_2 , and bromo derivative 14 (2.24 g, 8.5) mmol), and the mixture was stirred at 23 °C before addition of phenyl acetylene (1.23 g, 12.21 mmol). After 10 h, the reaction mixture was treated with hexane (40 mL), filtered through a small silica pad, concentrated, and purified by flash chromatography, which yielded the desired product **5a** (1.74 g, 72%) as a viscous oil. Spectral data for compound **5a**: ¹H NMR (CDCl₃, 400 MHz) *^δ* 7.60-7.62 (m, 3H), 7.34-7.40 (m, 4H), 7.26-7.28 (m, 4H), 6.98 (dd, 2H, $J = 8.8$, 0.8 Hz), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 100) MHz) *δ* 159.1, 143.4, 133.0, 132.9, 131.3, 130.5, 129.3, 128.5, 128.2, 128.0, 126.6, 123.5, 121.4, 113.3, 92.1, 89.6, 55.3; HRMS (EI) calcd for $C_{21}H_{16}O$ (M⁺) 284.1201, found 284.1209.

(2) Representative Procedure for ICl-Induced *Ipso* **Cyclization: Synthesis of Spirocyclohexadienone 6a.** A solution of compound $5a$ (500 mg, 1.76 mmol) in dry CH_2Cl_2 (18 mL) was maintained at -78 °C with an acetone-liquid N₂ bath. To this solution was added ICl $(3.51 \text{ mL}, 1 \text{ M}$ solution in CH₂Cl₂), using a standard syringe. The reaction was maintained at the same temperature, and monitored by TLC. After the completion of the reaction, it was quenched with a saturated sodium thiosulfate solution and warmed to 22 °C. The reaction mixture was extracted with CH_2Cl_2 (2 × 20 mL); the combined extracts were washed with brine solution, dried over MgSO₄, concentrated, and chromatographed through a silica column to yield product **6a** (642 mg, 1.62 mmol, 92%) as a yellow solid (mp 206.3-208.5 °C). Spectral data for compound **6a**: ¹H NMR (CDCl₃, 400 MHz) δ 7.44 (d, $2H, J = 2.4$ Hz), $7.29 - 7.33$ (m, 6H), 7.08 (d, 1H, $J = 7.6$ Hz), 6.41-6.50 (m, 4H); 13C NMR (CDCl3, 100 MHz) *^δ* 185.7, 150.0, 147.0, 145.8, 140.0, 134.7, 131.0, 129.1, 128.7, 128.3, 128.2, 127.8, 123.8, 123.2, 99.8, 62.3; HRMS (EI) calcd for $C_{20}H_{13}IO$ (M⁺) 396.0011, found 396.0007.

(3) Representative Procedure for Acid-Mediated Rearrangements: Synthesis of Iodophenanthrene 9a. Compound **6a** (500 gm, 1.26 mmol) was dissolved in a mixture of CH_2Cl_2 and MeOH (12.5 mL, v/v , 1:1) and cooled to 0 °C with an ice water bath. At this temperature, H_2SO_4 (247 mg, 2.52 mmol) was added dropwise with use of a glass dropper for 10 min; the reaction was warmed to 22 °C, stirred for 6 h, and monitored with thin-layer chromatography. After completion, the reaction mixture was treated with water and extracted with CH_2Cl_2 (3 \times 20 mL). The organic layers were washed with brine solution and dried over MgSO4. The organic layer was filtered, concentrated, and purified by using column chromatography, which delivered the product **9a** (481 mg, 1.17 mmol, 93%) as a yellow solid (mp $137.2-138.5$ °C). Spectral data for compound **9a**: 1H NMR (CDCl3, 400 MHz) *δ* 8.58 (d, 1H, *J* $= 8.8$ Hz), 8.52 (d, 1H, $J = 8.0$ Hz), 8.42 (d, 1H, $J = 8.0$ Hz), $7.49 - 7.64$ (m, 5H), $7.24 - 7.28$ (m, 3H), 6.75 (d, 1H, $J = 2.4$ Hz), 3.66 (s, 3H); 13C NMR (CDCl3, 100 MHz) *δ* 158.2, 145.4, 144.7, 134.6, 133.7, 131.4, 130.5, 129.8, 128.5, 127.8, 127.5, 127.0, 124.6, 124.1, 122.1, 116.8, 109.7, 109.1, 55.1; HRMS (EI) calcd for $C_{21}H_{15}IO$ (M⁺) 410.0168, found 410.0166.

(4) Representative Procedure for ICl-Induced Cyclization: Synthesis of Iodophenanthrene 8. Compound **8** was obtained in a 82% yield by treatment of biphenyl species **7** with ICl in cold CH_2Cl_2 ($-78 °C$); the procedure was similar to that of species **6a**. Yellow solid (mp 112.3-113.5 °C); IR (neat, cm⁻¹) 3075, 3025, 2832, 1607, 1243; 1H NMR (CDCl3, 400 MHz) *^δ* 9.64 (d, 1H, *^J*) 9.6 Hz), 7.96 (d, 1H, $J = 2.8$ Hz), 7.24-7.29 (m, 2H), 7.12-7.17 (m, 3H), 7.04-7.05 (m, 3H), 4.11 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H); 13C NMR (CDCl3, 100 MHz) *δ* 159.1, 158.6, 157.7, 145.5, 139.2, 134.5, 133.9, 131.0, 130.5, 125.6, 124.8, 121.9, 121.2, 116.8, 115.8, 113.8, 109.1, 108.8, 56.0, 55.4, 55.3; HRMS calcd for $C_{23}H_{19}$ -IO3 (M+) 470.0379, found 470.0375.

(5) Representative Procedure for Intramolecular Mizoroki-**Heck Coupling: Synthesis of Dibenzo[***g***,***p***]chrysene 11a.** A twonecked flask was charged with iodophenanthrene **2a** (200 mg, 0.44 mmol), PdCl₂(PPh₃)₂ (15 mg, 0.022 mmol), and CH₃COONa (72) mg, 0.88 mmol) under a nitrogen atmosphere, followed by addition of DMA (9 mL). The resulting solution was heated at 120 °C for 4 h, then cooled to 22 °C and HCl solution (100 mL, 1 M) was added. The resulting mixture was extracted with dichloromethane, and the organic layers were combined, dried over MgSO4, and concentrated under reduced pressure. The residue was chromatographed on a silica column to afford **11a** (102 mg, 0.31 mmol, 71%) as a yellow solid (mp $210.5-213.4$ °C). Spectral data for compound **11a**: 1H NMR (CDCl3, 400 MHz) *^δ* 8.68-8.70 (m, 8H), 7.60-7.69 (m, 8H); 13C NMR (CDCl3, 100 MHz) *^δ* 130.7, 129.1, 128.8, 127.4, 126.4, 123.5 (one peak merged); HRMS (EI) calcd for $C_{26}H_{16}$ (M⁺) 328.1252, found 328.1256.

Acknowledgment. The authors wish to thank the National Science Council, Taiwan for supporting this work.

Supporting Information Available: Experimental procedures for the preparation of **1a**, X-ray data of compound **6j**, spectral data, and copies of NMR spectra of key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO701504M

⁽¹⁷⁾ Blake. A. J.; Cooke, P. A.; Doyle, K. J.; Gair, S.; Simpkins, N. *Tetrahrdron Lett.* **1998**, *39*, 9093.